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ONE-DIMENSIONAL TWO-PHASE FLOW IN COMBUSTION CHAMBER

OF SOLID PROPELLANT ROCKET MOTORS

CHANG XIANQI

ABSTRACT

lIn this paper, a numerical solution of basic equation for /23

one dimensional two-phase nonequilibrium flow in a combustion

chamber of solid propellant rocket motors is discussed in detail,
combust ion

the effect of particle size on flow field in Achamber and pressure-

time curves is analyzed, and some useful conclusions are obtained

in comparison with results of one dimensional two-phase constant
combust ion

lag flow in chamber. It is useful for predicting pressure-time

curves accurately and providing accurate boundary conditions

for the calculation of two-phase flow through the nozzle. ( jt';
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Nomenclature /ii

A - duct cross section area

Ab- Burning area of charge

AQ - Thermal equivalent of work

- Area of the nozzle throat

A - Mean molecular weight of gas

n - Pressure exponent

P - Pressure

P - Total pressure

b-Burning speed coefficient

C"- Characteristic speed of propellant

C1 - Particulate specific heat

CPg- Specific heat of gaseous phase at constant 
pressure

g - Gravitational acceleration

h - Enthalpy per unit mass

H, - Total enthalpy in 1 kg of two-phase mixture

Hsg - Total enthalpy in 1 kg of gas

H - Total enthalpy in 1 kg of liquid

K - Ratio of specific hcat of gas

K - Particle velocity lag coefficient

K - Surface - throat ratio '=

]-Charge length

L- Particle temperature lag coefficient
m - Mass flow rate nf two-phase mixture

m- Mass flow rate of gas

q - Heat flux of particles per unit mass

r- Burning rate

2
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rp - Radius of particles

ng- Gas constant of gaseous phase

S - Duct circumference

t - Time

T - Temperature

To-Total temperature of clharge head gaseous phase

T.- Total temperature of gaseous phase

v - Velocity /12

x - Axial coordinate

X - Particle resistance per unit mass

Y¢- Outer radius of charge

p - Density

pi - Density of propellant

rh,- Mass flow rate of condensed phase

Mg- Mach number of gaseous phase

PmP - Density of At203 material

r - Fraction of particic mass flow rate, -

- Coefficient of thermal conductivity of gaseous phase

A ,- Coefficient of dynamic viscosity of gaseous phase

SUBSCRIPTS

g, - Gas phasc

0- Cross section of charge head

L - Cross section of nozzle throat

P Coidensed phase

L - Cross section at the charge tip

i- initial vaue]

3
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1. PREFACE

Modern composite solid propellants are mixed with a certain

amount of aluminum powder for increasing energy and decreasing

unsteady burning. When the aluminum mixed propellant burns,

A12 0 3 particles are formed in liquid phase. The weight fraction

can be up to 30-40%. Therefore, in combustion chambers and jet

nozzles, the products of combustion actually are a mixture of

gas and liquid.

There have been a lot of publications regarding two-phase

flow in jet nozzles of a rocket motor. Most of them are devoted

to one dimensional two-phase flow and two dimensional axial sym-

metrical two-phase flow in nozzles. There has been some progress.

* Two-phase flow in a combustion chamber is involved with mass,

and has some new characteristics. The author has done research

on one dimensional two-phase constant lag flow in a combustion

chamber [4] , analyzing the particle velocity lag effects on the

combustion chamber processes. This article studies the one

dimensional two-phase nonequilibrium flow in a combustion chamber.

Based upon the principle equations of one dimensional mass involving

two-phase flow in a combustion chamber., it discusses the numerical

solutions of the equations in detail, analyzes particle size

effect on the chamber flow field and the pressure-time curve,

and compares the results with that of constant lag flow.

Some practical conclusions are reached. This gives precision

in predicting pressure-time curve, and more accurate boundary

conditions for calculation of two-phase flow in jet nozzles.
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II. FUNDAMENTAL EQUATIONS

Assume:

1. Flow is one-dimensional and steady-state;

2. The friction and heat loss on the duct wall are negligible;

3. A1 2 03 particles are spherical, uniform, and in the liquid

phase; the particle volume and the Brownian motion effects

on pressure are negligible;

4. The gas phase is an ideal gas at freezing point except in

contact with particles and otherwise is inviscid;

5. No mass exchange between two phases;

6. The specific heat of gas and particles is constant /13

Based upon the above assumptions, the fundamental equations

of two-phase flow in the combustion chamber are obtained

as follows 03 and r3):

Gas phase -

Mass Equation:

dj-(pe v A) (1-e)prrS

Momentum equation:

d d -XpM (2)-- (p,v' A).= -A Xp 2

Energy equation:

- -- psgv# h +Ao =(1-e )prrSgHso-AoXppvpA+qpPA (3)

in which r =bP"

Condensed phase-

Mass Equation: d ((4v,))=

5
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Momentum equation:

d±(p,v'A) -X (5)

Energy equation:

__p4 ,GvPA(hP +AQ -!)]=prrSgHsP+AoXPPvPA-qpPA (6)

Two-phase mixture-

Mass equation:

d, = r (7)- p rS

Momentum equation:

d ,PV AdP-- (pvA + pv;A)" dA (8)

Energy equation:

d h+t+ph+A prSHs (9)
d-!L 2 2g /-

in which

t%, pv#A

*kp =ppvpA

i,, ---- + thp

III. SOME SUPPLEMENTARY RELATIONSHIPS

Equations (l)-(6) &re not closed, therefore,

we introduce the following supplementary relationships:

1. Gas-phase condition equation

for an ideal gas -- P=pgRT, (10)

6



2. Condensed-phase condition equation.

When the Al 2 03 particle temperature is greater than the melting

point (T,.-2318"K) assuming its specific heat is constant,

then

h, -h,. + cK,(r-rT,.) (i .

in which

C1 - Specific heat of liquid AI 2 03 particle, 0.34327 KCal/kg.

degree K; hpm - Enthalpy of liquid Al203 at T pm 876.9498

KCal/kg

From (11) we have
dh = C,dT, (12)

3. The particle resistance X[l,2] per unit mass

X=AP(v,- ,) (13)

Under the condition of combustion chambers, the particles
S.

carryout Stokes flow, at this moment

9 _____

Ar--
2 r:p..,

in which u,=1.208xlO-'T'-A).s(kg,sec/m
2

4. The heat flux q [1,2] of particles per unit mass

qB(T,-T,) (14)

in which B,=

5. The total enthalpy H in 1 kq of two-phase mixture Hs=(l-e)Hs+eHs.

From the assumption 2, H is constant along the channel,

therefore, it is convenient to use the parameters (0,= 0, T,=T,=T.)

at the charge origin (x=0), to express Hs . Therefore
SS

Hs=(1-)C,T.+cEh.+C,(T.-T,-)] (15)

7

. ... . . . . . . .



IV. COMPUTATIONAL EQUATIONS

Let

K = i - -p (OK<1) (16)
Vo

LEToTP (0<L 1)
9-- T# (17)

Therefore particle velocity lag -V-v=l-K
V9

particle temperature -lag -T"-T. I-L

Here K,L are defined as particle velocity lag coefficient

and temperature lag coefficient respectively.

Ignoring the effect of burning erosion, assuming the cross

section area A of the charge duct is constant along

the longitudinal axis, after an elaborate manipulation, the

following numerical solution is obtained based upon the

fundamental equations:

dvp _AP,- _ _ eprrS
dx up pA

dvgR =gppVe Up". dr, R rgp,,h,APV-v

dx p,(vC,g-RTCp,-AoR.v')-V

+pPBP(T,-T)+AopAp(v -vp)'+ (l-e)prr $g

* Hi +he +,.-v-)l- -C)PrrS.z 2 AP V#Vig+ ' pA 1-e vP

dx

VPk

(1-e),k
P vo A (18)

P= P. - (p,v 1 . + prV'r)

PT p~gR,

T -- F e CIT, + (I1 - e) Cp oTo - (I - it )C p T

C"I'

_ V

- ,/kgR- To

T s= T,(I +

,_ -*;.-_ -



in which Ho,,C,,TI

The system of equation (18) contains 3 ordinary differential

equations and 8 algebraic equations, with the unknowns. 'i Tr' P9 v. T,.

p,.P. Ps. T,. MoJa, under the given boundary conditions, which

can be solved by the Runge-Kutta numerical method.

V. INITIAL CONDITION AND BOUNDARY CONDITIONS

The initial condition of the equation:

When t=O, S=Si, A=Aio. The value of A., Si can be obtained by

the actual shape of a charge duct, for a circular

cross section of the duct.

Sms xy.

Yi is the duct initial radius.

The boundary conditions of equations:

If the charge fills the annular space between two closed

end coaxial cylinders, the boundary conditions are (refer to

Figure 1); at the charge head (x=o) cross section

Vla.=0 S

T;0 = Tp°= T

p=p° (19)

Pu OPR,
gR,T.

e Vo 1-e K.

9



in which, the total temperature of the charge head gaseous phase T0 is equal

to the burning temperature of the charge. P0 is the correspond-

ing pressure. Before solving the equation, it is unknown. Therefore,

its value has to be determined by the iteration process in the

numerical solution. The particle density P,, at the charge

head is Q an uncertain value. To determine this value, the0
value of K has to be obtained beforehand.

L

Figure 1.

At the charge end (x-1) cross section the mass flow rate m of the

two-phase mixture passing through the cross section area at the

charge end (x-I), should be equal to the mass

flow rate i t of the two-phase mixture passing through the throat

of the jet nozzle, that is

ML-*h, (20)

mL can be determined by the parameters of

of the x=I cross section, that is

(21)
fhL A( pg LVgL + P1r LZp L)

10
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The present article is mainly about two-phase nonequilibrium

flow in a combustion chamber. To avoid the numerical solution

for one dimensional nonequilibrium two-phase flow in the jet

nozzle, in the determination of the boundary condition

of the charge end, it is assumed that the

flow in the jet nozzle is a one dimensional two-phase constant

lag flow, therefore:

MOM Ps.A. ,- (22)

in which
C =I+1-{K[k(I_-K)+K]+(kI1)6L.D}

1 + K2e

r-l+ (k-I)D
C

where the value of K, L should be taken as the corresponding

value at the end of the field length.

VI. THE DETERMINATION OF K, L
o 0

For obtaining the distribution of particle speed lag and

temperature lag along the duct) and the numerical solution

for a system of equations (18), the values of K, L at the

. , ,,." . ; .. . . & , _ 4 , - - _ '--: % . 4 ,,-... , ,. 4, ,, ,. - . . S. , ,- ** ,, . ,, - ,-



charge head (x=0) have to be determined.

However, at x-0, both K and L are indeterminate forms, therefore,

it is necessary to consider that at the charge head

L. L=i.. *

1. The determination of Ko

from 1 ' Hopital's rule

VK. (a)K a = T , l ,

After transforming the first equation in the system of equations

(18), we find that , at X- 04 , vL]..O+ is also

an indeterminate form of So

vV _ I.-A .- _ -_ v, I.-

For convenience, the subscript x-.O has been omitted in

the following expression. After rearrangement it reads

2 v", +u,- v;=-O (b)

With the help of the boundary condition (19), from the second

equation in the system of equations (18) the following is

derived that at x-.O+

V (-e)rr.S (c)

in which r.-bP:

Substitute (c) into (b), it is obtained that at x-.0

_1+i+8 (1-e)p~r.S -(d)
+ Ap p,,A

A,

12



Because in a combustion chamber the flow involves

an additional mass of particles, if the speed of a particle

increases, then vZ>O, therefore, (d) should be positive

which results in the sign in front of the square root being

"+If.

Substitute (d), (c) into (a), and set

4 (I-t)prr.S (23)
A, PgA

then obtain

K,= - 1+ /1+ 2a  (24)
a

2. The determination of L :

Same as above, from 1' Hopital rule

L,- T lw" + !(e)T. 0 *

It can be derived from the fundamental equations (l)-(6)
B ,(T,-T,)

dT, srTp=,xL(Hs,_hp+AQ _!Lo P' C

dx X V.gCi

0
herein, T;L-.- is also an indeterminate form of 0.

From l'Hopital rule it is obtained as

B ,. T 'PI ... 'T I,,. "T ' , = T ;. J.-.+- - ,t;I .-
gC1

Omitting the subscript x-O* then

B, T.-T; 
(f)

let B, I
lC, V,

13%.

13 .
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from equation (f) it is obtained

LIM - - (25)2+0

Wlith the expressions of equations (d) and (23), the following

is obtained:
4 B, 1A4 B) (26)

VII. NUMERICAL SOLUTION OF THE SYSTEM OF EQUATIONS

Under the boundary conditions (19), (20) and the initial

condition, but use of the fourth order Runge-Kutta method the

solution for the system of equations (18) can be obtained as

follows:

1. At a fixed time t, the gas flow parameters (v, T,, pe, P,

Ps, Ts, M,),. , the particle flow parameters (, T,, ,) and

the particle lag factor K, L distribution along the

duct.

2. The pressure variation with respect to time in the combustion

chamber.

In the boundary condition (19), the head pressure P0 is unknown apriori,

and has to be determined with the numerical solution process. The

procedure is the following:

14



(1) Form P')-(C*prbK,)i -: to compute the first approximate value;

(2) With the value of P0 (I ) solve for the system of equations

(18), and obtain the variation of parameters of the gas and the

particle along the x-axis, then form equation (21), (22) and

solve for &L and mr;

(3) Let Am=S,-,L , and make a judgment on

(27)

1 is a given allowable error, for instance Si=0.01) to see

whether it is satisfied.

(4) If equation (27) is not true, and Nf>O! , take A.-P,"-AP
(AP is the given increase in pressure, for example

AAp=l kg/cm ), otherwise take p(,z=p(,,+n , repeat the pro-

cedure for solving the system of equations (18), if the mass

flow rate satisfies (27), then P (2) is the true value of the

pressure at the charge head P0;

(5) If the condition (27) still can not be satisfied, the following

interpolation equation can be used for computing P (n)
0

p(G) p,_ +Ar ! P.O Am" (a-3,4,5 ...... )

then solve for the system of equations (18), till the mass flow

rate satisfies equation (27). Figure 2 shows the flow chart

of the numerical solution process, in which r c is the average

burning speed along the length of the duct.

15
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Figure 2.

Key: (1) start; (2) input; (3) compute Po; (4) furnish

boundary conditions; (5) Runge-Kutta method for solving

the system of equations (18), (6) output, (7) adjust

the head pressure P6 (8) N-, (9) Yes,

(10) Yes, (11) No, (12) Stop, (13) Flow Chart of

Computation.
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VIII. THE EFFECT OF THE PARTICLE SIZE ON

INTERNAL BALLISTIC PROPERTIES

As to a certain solid propellant rocket motor ( E=0.2 6 ),

the pressure-time curve and the flow field in the combustion

chamber have been computed for different sizes of particles.

Figure 3 shows thje effect of the particle size on the Pressure-

Time curve. It can be observed in the figure that the pressure

in the combustion chamber decreases as the particle size increases.

At t=O sec., the variation of the combustion chamber pressure

P0 with respect to the particle radius is shown in Figure 4.

The decrease of the combustion chamber pressure will lead to

a slowdown of the burning speed, increase the charge burning

period and decrease the mass flow rate.

At t=O sec., the variation of the gas parameters along the

x-axis for the different particle sizes is shown in Figure 5.

M 9solely increases with the distance, the rest of the parameters

decrease with the distance. Because P 0 decreases when the particle

size increases, therefore PP 5 spg9 are affected by the particle

size distinctively. The larger the particle size, the smaller

are the values of them. But the particle size effect on T 9is

negligible.

Figure 6 shows at t=O sec. the distribution of the gas speed

g and the particle speed ),palong the duct under

different particle size conditions. Because the flow

in the combustion chamber is involved with an increase in mass,

both and - increase along the length of the duct. But the particle

17



size effect on and ~fis different when particle size increases:
'V~g p

increases, but ir decreases. This is because the particle

of unit mass has a resistance to the gas of .When the

particle size increases, X decreases, so the gas speed increases.

At this moment the torque exerted on the particle by gas decreases.

This results in the particle acceleration decreasinq, therefore

becomes small. The density and temperature distribution of

the particle are shown in Figure 7. It can be observed that

P~p hardly decreases along the duct and T pbasically stays

constant.

The effect of the particle size on the value of Ppis

significant: when particle size increases, ppincreases too.

But the effect on the value of T pis negligible.

At t.0O sec., the particle speed lag factor K and temperature

lag factor L distributions along the duct are shown

in Figure 8. It can be observed that the value of K slightly

* decreases along the distance, but the value of L fundamentally

stays constant. This indicates that in the combustion chamber,

the particle speed lag (1-K) increases slightly along the length of

the duct, but the temperature lag (1-L) b-asi fly stays constant.

The smaller is the particle size, the smaller is the variation

of K value along the distance. (Refer to Table 1.) Therefore

when the particle size is small, the two-phase flow in the

combustion chamber can be treated as the constant lag flow motion.



Table 1.

tT#a p(A)K. A 4K I PX)(ft

2 0.9958 0.020

5 0.9752 0.082

10 0.9123 0.263

20 0.7538 0.478

ppKey: (1) The radius of the particle rp

(micrometer), (") The decrease of K at the charge end

Table 2 lists, for different particle sizes, the comparison between

the numerical solutions and constant lag flow computations of

some important parameters in two-phase flow in a combustion .

chamber. Compared with the numerical solution, the combustion

chamber pressure P0 and the total pressure at the end
%"

charge end obtained from the constant lag flow ',

computation are comparatively low, and the rest of the parameters

are comparatively high, but the deviation is less than 1%. ,

Table 2.

PO PSL -V V5L

5 18,66 18.57 18.42 18.38 119.64 120.46 11.58 137.4

10 18.42 18.37 18.20 18.18 120.90 121.50 110.00 110-82

20 17.92 17.87 1 17.70 17.68 123.12 124.26 92.74 9.82

Key: (2) Micrometer, (3) Kg/cm2 , (4) kg/cm2

(5) m/sec, (6) m/sec, (7) (9),(1l),(13) numerical solution,

(8) (10)(12)(14) constant lag flow.

19
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From equation (24),(25) it becomes known the values of K0 , L0

are functions of the particle radius rp. Their variation with

respect tor is shown in Figure 9. It can be seen in the Figure

Ko, L° values decrease when the particle size increases, which

means, the particle speed lag and temperature lag increases as

the particle size increases.

Besides, K 0 < Lo, in the nonequilibrium flow in the combustion

chamber, the lag of the particle speed is greater than the lag

of the particle temperature.

IX. CONCLUSION

Through the above discussion the following conclusions are

therefore obtained:

1. Because of the effect of the two-phase flow, the pressure

of the combustion chamber decreases, and the larger the particle

size, the smaller is the combustion chamber pressure.

2. The two-phase flow affects the flow field in the combustion

chamber greatly. When the particle size increases, the gas

speed increases, the pressure, total pressure and the gas

density all decrease. When the particle speed decreases,

the density increases. The effect of the particle size on

the temperature of both gas and particle is very

small.

3. In the combustion chamber the lag of the particle speed increases

along the length of the duct, the lag of the temperature basically

keeps constant. Besides, the particle speed lag is greater

20



than the temperature lag. When the particle size is small,
the two-phase flow in the combustion chamber can be treated

as the constant lag flow.

PO (kg/l I cm)R gr

4(1-

3(1

1U

PAi

- , , , _______________________17

Figure 3. Pressure-Time Curve Figure 4. Effect of the
particle size on P0

O 

-S

S 0. If nOu 1 ----------- - -

, , I4

Figure 5. Distribution of gas Figure 6. Speed distributicn w

parameters in the two-phase of the gas and the particle JNflow. in two-phase flow. N
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PRESSURE COUJPLED RESPONSE FUNCTION

OF SOLID PROPELLANTS INCLUDING THOSE WITH

NEGATIVE PRESSURE EXPONENTS

XU Weng-an
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SUMMARY

On the basis of the evidence presented, a steady state coabustion

model (1) of solid state propellents with negative pressure coefficient

burn speed characteristics allows us to derive a new pressure response

function formula. This can be used to explain pressure pairing phenomena

for propellents whose combustion speed pressure exponents are zero,

positive, and negative. The burning propellent is divided into two

sections: the first section is a structure composed of oxidizin, agent
:o~rv'e1 by .olten binding agent and the corresponding binding agent

-$'. T~h9 ot'her section is formed by uncovered oxidizer surface and

remaining binding agent surface. This model is different from the

various types of models in the past. In the combustion on the surface of

the first type of section described above, consideration has been given

to the oxidizer, under conditions in which it is covered by molten

binding agent, -io tnat it is considered to be in a state of opposed

gasification and congealed p has3e reaction. Therefore, the real section

of the pressure response function which is obtained, when the pressure

exponent of the propellent steady state fuel speed is zero or has a

negative value, is also capable of being a positive value. When we made

use of the expression obtained for the pressure response function in

experi'entation with the propellent(S04-5A)and made qualitative

calculations, the results of these calculations satisfactorily explain

the phenomenon of propellents with negative pressure exponents still being

f)stal .) _stlo (,)it ,f V 3arface area of the oxidizer is
covered by molten binder agent. This not only overcomes the weaknesses
which all expressions for pressure response functions had in the past

when used with negative pressure exponent propellents, but also, in a

way, reflects the accuracy of the solid fuel propellent steady state

conbustiori nolel (1) Ln its combustion speed characteristics for

po itiae nd neg?.tive pressure expoients.

Exp in~t _n of :Sy,abols

AE.. 1 T,
RT,\T.S
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A.. Oxidizer Gasification Rate Indicator Prefactor

- 2R*2llB =f(T-T,)E,

*B, Indicator Prefactor in Oxidation Agent Equilibrium Evaporation

Prt . ire Formula

B, (1+ J- U AP 's
I B~~ -~ W,. 1

Pexp (pAT,

C ,3pecific Heat

D mA+,(AB-A)

(48

S€ .. 2+,(AB-A)
C+ q/E,

E., £nergy of kctivation for Oxidizer Agent ,Tasification Reaction

El Energy of Activation for the Propellent Gas Phase Combustion

P r ) f- -

F 2+A,(AB-A)

G .s. awtioi of Oxidizer Agent for Colnpletion of Condensation

K 7pe, 0 Co ,tft 'or 1as Phase Reaction

U
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m Mass Flow Rate

? Combustion Speed Pressure Exponent

p Pressure

QF Unit 'ass Binder Decoqposition Reaction Heat

Q. Boundary Layer Reaction Heat of Unit Mass Oxidizer

q Meat of Evaporation for Unit Mass Oxidizer

qq -eat Flow for Gas Phase Boundary Surface 'Flow

Qg kao'iit of Heat Released by Unit Mass Gas Phase Reaction

q, Rate of Release for the Heat of Purification from Boundary Surface

Reaction

Q. Real Section

RI Universal Gas Constant

RP Pressure Response Function

S -- La- )-(-j is the itaginary number unit V/-I

T Temperature

T, Albsolute Temperature of the Propellent Flame

T, lriitial Propellent Te-aperpture

T. 71-opellent 3arface Temnperature

t lne
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E WA, 'Tram aolecular vreighit of oxidizer evaporation gas

,w Grara Molecular Weight of Gaseous Products from Congealed Ph-te

Oxidizer RaTctioq

x Distance

a ,4ass Fraction of Oxidizer in the Propellent

y Surface Area Fraction Composed of Oxidizer Agent Surface Covered by

nlten Binder Agent

A Tongealed and Solid Phase Ti At Conduction Coefficient

I Jondiviensional Distance X

P C"ongealed and Solid Density

D Tondinensional Frequency M -A 0

co 4ngular Frequency

SUPERSCRIPTS

- teady St-ite Value or Aver-ige Value

V i )1 i- ,--_

-~ ~ ~ i -hii~(~~:)I' ? Per'tubation
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I Parameters Corresponding to Area I

I Parameters Corresponding to Area II

U3C R [ PTS

i Cmaginary Section

r 3eal Section

I Paramneters Corresponding to Areat I

I "arameters Corresponding to Are-t !I

s 3oui-try .L1rfi, Value (Congealed Phase Side) for the Place Where

x=O

1. Introduction

,onic instability is the primary form of combustion instability of

3olil prop-llert rocket notors. Moreover, this type of sonic instability

-mx as its primary source the combustion response of solid fuel

p-op r l . B() a ... I I . - o this, in the test construction of solid rocket

Qators, the sonic instability which they show is extremely important, and

-h-U heory and neasurements associated with combustion response are

indi rensable. In linear sonic oqnalysis, on 55 3 3iO rn -vlriether or not a

I'kt L-tor ,ill give a timely, consistent pressure perturbation

al iit, l'o rQng '- sonically unstable fuel. In this type of

L) rj" ' 3 3 tl - - rLponse futnction nst already be known.

. )L ) . i p ,pellent pressure response has received

I 'I - A ln oC ?eL-e.ir.oh work in both th3 U3 . 'rid thve Soviet Union.
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F.E.C. Culick (2) and N.S. Cohen (3) have already done excellent

critiques of this problem. Concerning "flatbed" propellent pressure

response functions, F.E.C. Culick and others (2) (4) have also done large

ainonts of research. However, the author recognizes that the steady

state combustion model and several assumptions which fora the basis of

the research are still short on experimental data to support them.

Moreover, several points of theory are still doubtful. For eaaple, in

order to explain the phenomenon of sonic vibrations in the combustion of

Llatbed propellents, we take the mass gasification rate for solid phase

reaction areas -,.(d change it for use in the expression below:

E,

4m=AP"ae Re r

-Proa this, we can derive the pressure response function formula:

nAB+n,(A - j )
-( +A)+AB

Moreover, ,;her ,ve is this reVttionship to compare with the results of
I< ,:, t , r eeC t n,= I .0 'iolv( ver, we know that, when the

; j.on.nrt o' ,th: r l3. gasification rate for solid phase reaction

areas is a positive value, the pressurP exponent for its steady state
combustion speed cian hardly be ze ro. This article does not initend to

rnake more criticism of these publication,3. We lt'.I_ pr'es.ent on the basL-s

or a steady state !jiodel (1 ) of solid fuel propellents in teras of
I,9)3ifi.\re -vil ~atc pre su~re exponents for co~bllstionl Speed

characteristics, and derive a new pressure resporise fanction formula and

fe.igru - We -,ill ause th to aak, a co;plete explanation of the

pr 533,xr'e pat r -in. pheno ,iQrn)r Ti'ch ,C 3t, in various types of sol d

pr'opell ntq ,€hen their combustion speed pressure exponents are zero,

po:iLti ve, and negative.
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2, Physical-Chemical 1,iodel

Tn the same way as was the case with the corresponding steady state

moiel (1), we select for use i one di:qensionial nodel and divide the

cobmbustion surface of the propellent into two sections. One section is

)!pD I off oxidizer agent surface covered by molten binder agent and the

,'.e~p) 1"i b" ir ,-j-rt surrace. Let us also stipulate that the

fraction of sirface area which it occupies out of the whole combustion (50

surface is V The other section is then composed of oxidizer surface

*qhich is not ,'overed and the remaining binder agent sUace. These t~o

sections are respectively called, for short, Area I and Area II, as shown

i "-'g. 1. At the same time, we take the combustion process for each

slid propellent area and simplify it into three stages, which

esp-tively occur in three different phases (Fig. 2).

i) The solid phase area on the inside of the solid propellent, to

which heat is applied, is gasified by the gas phase flame area with the

congealed phase reaction area supplying the heat.

2) Within th .ongealed phase layer between the solid phase and the

pha3e one sees the development of an oxidizer boundary layer reaction

and binder agent heat of decomposition whi-ch are contained in the

congealed phase reaction and the gasification reaction. In Area I,

unlike krea IT, one must consider the molten binder agent liquid layer

*qh, e the surface of the oxidizer as well as the oxidizer

,,-tth P.t as they exist in the congealed phase reaction related to

gasi.fcation and Its opposite process--opposed gasification.

3) In the gas phase one sees the occurrence of combustion processes

which include dispersion, ing, nd cheical reaction.

30
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Fig. 1 One Dimensional Steady State Model

* 1 . DL3pe3r-3'. Plane 2. Perturbed Flame 3. Oxydizer Agent 4. Liquid

Phase 5. Solid Phase 6. Paired Agent Mixed Layer 7. End Flame 8.

AP Flame 9. Initial Flame 10. Combustion Surface 11. Propellant 12.

Liqaid Phase 13. Solid Phase

I
Sl

0

7ig. 2 4 Simplified Two Dimensional Model 1. Congealed Phase Layer 2.

3 o, j D'ase Area of Increased Heat 3. "as Phase Reaction Area
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3, Mathematical Treatmaent

For the sake of cor1ieiaence in the mathematical treatment, we first

-ake the following assumptions:

1) The influence of heat damage is negligible.

2) The solid propellent is nonco~npressible, of a uniform qualtiy,

and of the same nature in all directions.

3) The congealed phase layer between the solid phase and the gas

phase is An infinitely thin pla-ae. T this pl-ane one sees occuring the

oxidizer congealed phase reaction and the gasification reaction (Area I

'Lnd Area !I are different and each has its own rules of reaction). At

the sane time, one sees occuring the high tenperature decoaposition of

binder agent. This plane is called the boundary surface.
(4) In the three solid, liquid, and gas phases discussed above, the

peciflc heat is always a constant.

'5) as phase reactions can be seen to be steady state processes.

6) The influence of congealed phase reactions on pressure

dist3'rbances is negligible. (51

7) When the amount of perturbation is sufficiently small, its second

ind h,'gher ord-' simall amounts can all be neglected.

4t the sane time, in the same fashion as normal models, we choose

for use a noving coordinate system. These coordinates take the

1rstaZ_ t .no s burn speeds of the propellents and move thera into the solid

phase area. in this way, the origin of the coordinate system ctn fall

er0:1 r;3Kyrnie -3OLMi--,:s pase bounidary safakce:.
13eloq ,ve pr.jset the respective treatments for Area I and Area II.

A r -ea T :
(1) Basic Equations

1) The unstable thermal conductivity equation in the solid phase

he~at all];on -trea is:

•aV aT aT
' - - - c - -T

32
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2) When we consider the existenca of molten boundary agent on the

covering of oxidizer surface and the oxidizer under the covering as they

affect congealed phase reactions and gasification reactions, from

retoeencs Article (I), the mass gasification rate of propellent is:

Yn=a KG, ~ROT,) K (+~l±()j(2)

3) -_P ie as3ume a steady state, the mass combustion rate for the gas

phase reaction area can be expressed as (5):

m=KPexP(_ 2ETI)

4) Energy equilibriun equation for the inside of the infinitely thin

congealed phase layer:

The difference between the heat flow q, from the gas phase

Cornbastiori " ani the neat flow X=0 tr'-nsfered into the

solid phase should equal the r-ite of heat release q,, which is produced

by the reaction 'n th oorgealed phase layer of the congealed phase and

the gasification reaction, that is,

_ pr I

oreover , i ig o)ti o) *o di t -tes for explanation, q,=m[O-c(T-T,)],

,also, q'm[a,-(1-a)QFI in these equations, Q, is the

amount of eelt r'ei -t I b ti A1 1-{-3 3 -Y-3 o reaction. Q is

the algebraic suma of the effect've heats of the oxidizer agent congealed

phase reaction and the gasification reaction. QF 1s the e.. e e h-t .

ro-n the high te'prjerature thernal d-comnosition -f birin , n -
I

33
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substitute the equations above, we get

A T  +m[aQ,-(-a)Qp-Q,+c(T,-T,)] 0 (4

( ) Linearization Treatnent:

1) First, we carry out a linearizatioq treatment of equation (1).

We postulate:

m(t)=m+R.tFle ' }

T(x, t)=T(x)+R.I'(x)e'"'}

If we substitute in equation (1), and eliminate the high order stnall

qu:ntities, as well as naking u3-se of the steady state condition

d'T dT) nc 0
A dx-T Rx rc" =

t -, 14 .t'on "t1 ch.nges to heco,,e:

A-T ei' R. .ried' >*d

.dx2 ec dx

34
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(52

d' dT

Adx' dc x dx (7)

Set

fn C

~A (a3)

S P

Then equations (5) and (7) can respectively be written

dlT dT .0~

d12 di

2) In the same way, in the case of equation (2), one can set

m =n+m' =m+R.{jfe"'}
T. =T. +T. =- , + R. T e" ) I ( 1

p=P+P -P+ R{Pe"'}

Moreover, one c-in ase the steady state condition

1 1 ( .~ [1- Pexp(T
mT" y-A.exp RE5. 1 WP-r

Division with equation (2) gives one

35



I_ T:C+1- (I+P)CpT"(2
(exPR RT. ) C

In the equation

G IVAD,'(+ f- G-  I G-
C--

Pexp p4-

E , T: q T:o9so, h.. 1 o the fact that RE.T. T and r.i are both
R"aT.R'Ta T, r bt

v-RTry snal. and q are both of the order of magnitude
S T: Thrfoe

of 10). 'Aoreover, is then in the range Therefore,
one has

Sexp , " =I+ T.

R*T. T. RT. T.

.3ub-3t at":g .i 1ation (12) and eliminating the srij.e yi-:ntities of

higher order, one, then, obtains
m' q T

m' E*. T PRT 6 7-..

t= RO-T,- T. c

As tbove, beca-is: of the fact that all of the equivalent forrms for tiae.s

2', RTE " t(l , ,) e )q ll ,t~ " 2i.

C T ,C P I
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3) After one c-irries oat the same type of linearization treatment

on equation (3), one obtains:

Oh P

F E, (14)
2R$Tt

4) In the same way, equation (4) can be changed to becoae:

(3) 3olition oC 7'11tLorns

3. .,. equation (9) and its boundary condition are:

d'T dT-- =0
dV- dj

1=--oo time T=Ti
L=0 time T=T.

it follows that its solution is obviously TmT,+(2.-T)eC

oreover, dT (.-T,)e If we take this expression and

substitute it into equation (15), we then get

di M (16)

"! J :7 1' 3"bstitute equation (13) and equation (10), equation (10)

ch-nges into

d3 T + E\- R T, P
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Its boundary conditions are:

=-ootime T-0

1'0 time T= ,

Therefore a general solution for the equation is:

q

-SL. UP) ..EF+ T R 5 P

Rn the equation. Moreover, is then

determined from the characteristic equation A,-A-S=O Because,

when =-oo , T=0 ; therefore, one only has A=(l+V+4S)/2

as a characteristic limit. Again, fron the boundary condition £=o
, when T. , it is possible to obtain a solution to the equation as

follows:

A" y" - - - RT.

Substituting in equation (16), one then obtains:

(5,4

A+ cY. ROT P . (

fftCE* P) . ]-l(7

39
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From equation (13), one has

!1. E-, EEN
c-_+P

M p (18)

If oqe takes equations (14) and (18) and substitutes them with equation

(17), one then obtains: -

C +- _ +_C ( -

c+-

CEO
q A1 P M  P _

C+E. "lP C-+__
SA " +_ - T,- . R'... -I

2 fn P E'TT ,J

M 2RIR EO

If we make B T-T)E . and we make' use of the pressure responsef P
function definition R, then, the above eqaation can be

arranged so that:

A-1

R'A= nAB- C+q/E..
A-._A+AB+ CA C+q/E., (A1-1).

Area II:

Based on a ,nethod similar to the one above, we only take basic

e1It oL (2) nrid change it to be m=A..exp(- -.) It Ps thR,"

)>4) b! l ) rine,.n expression for the ,r--s3u.ae rp.j-e fanction for

Xrea 11(5):
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nAB
A_A+AB+ (A-1)

Again, on the basis-of the nort Ll assumption that there i3 a direct

proportion between combustion surface gain and combustion surface area,

the pressure response function for the entire combustion surface for'Qed

by krea I -Aad krea II 9hould be:

*A-i ,A,,

nAB,-c+q/E." +( V-)
R A" +A, B, + C A,,

-- C+q/E,.

kctually, the imaginary section is:

(55

(R .),-- D'+E CE , E,
A.nAB( .D, 1 1 + + ,E.F))

+(-)nfl!BI(AD+AiF)+(- D+F,

-A,n, AIBIE + (Ain),AjB, )/,D

(R,),=v- D'+(E'RC)

+ (1 .~)nAijB,(AD-AF)- ': D +F l

In the. e , .e atior*s,
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D-A+A,(AB-A), E_- C/,+A(AB-A),

F --=+A,(AB-A);

I+ i(I + 1609)II

4 Results of Calculations and Discussion

Making use of the steady state model(1), the various results of

intitial calculations on S04-5A experiments (Table 1) Co-r the iitial

data to substitute into the formula for the real section of the pressure

cpone Cuqction, yielding results such as those shown in Fig. 3.

v

IpI

" 3 :? '3al Portioni of Two Low Pressure Response Functions for

S04-54&

Tne for~aul-is o-triq d t the results of calculationis allclry

show that the real sectioari of f, r a o s unctions for "plateau"

and "mesa" propellants whose pressure- e xponenits a-re 6ero or negative are

all capable of being positive value.s larger tli-in zero within quite a

large range of rrequencies. From the standpoint of theory, this explains

ve ry -T ll , c t,- a,3 o)c it r thq 3 r,? phlr no q-rj of unst-ible comnbus3tion

1



and the existence of these two types of propellents(4)(6(8). Moreover,

j~ist as this author calculated in reference (1), due to the fact that the

• bnojrqil co-h,.tLori or oxidizer cocered with molten binder agent takes

the place of partial shut down, in this way, under the pressure

associated with the existence of widespread covering, it is, on the

contrary, easy to see the appearance of the results of :el.-e KcLted

oscillation . It is then possible to give a reasonable explanation. (56

B, kg,'cm' 3.48 X 10' P kg/cm' 23 35

C Cal,'g ' K 0.3 G o.3 0.2

E.. Callmole 2.2x0' y 0.6 0.8

Et Cal mole 6.0x 10' n 0.572 -0 693

q ; Cal, mn l 2.08*x0' I 1038.6 1 1098.8

TI 2900 0.75 I -0.783

T, 'K 293 K 1086.6 1108.0

' APIP) g9m( lC 117.5 nil 0.486 0.424

g' gMole 28.4

Cal,'cm stc *K 0.3x 10-' I; -

g cm, 1.66S

Table 1 1 . Iara aeter 2. TJnit 3. 'Nuerical Value 4. Sample

,That the dotted line in Fig. 3 shows is that, in reference (1), S04-5A

propell.rnt, with a large surface area covered and a pressure of P=23kg/ cn'

i r eperi ;nts with the "T" type engine, shows the appearance of

:lf- excited oscillation. The frequencies involved correspond to the

r-l s-1 iLo'i 71 3.-I Qf' o1- -, i ' t or t e li igh pressur es.

o , ti , t'i ,nPearance of slf-excited o i1.1ation in these .

(p ~nent,_ *arnot be considered surprising.
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Most of the results discussed above were obt:-tLqnei throgh analysis

in Area I. This was done through the use of our steady state model and

with conisideration given to the covering of the oxidizer surface with

.no..tI O r' 4? 1h %f) li congealed phase reaction as

well as opposed gasification. Because of this, the theoretical formula

de"-,ed ,or the pressure response function can not only overcome the

deficiency -t3sociated 4ith the fact that the pres.sure response function

formulas we already have cannot be used with negative propellent pressure

* eponents, but also, in one respect, it reflects the vitality of the

stable state co'nbustion 'nodel(1) for solid state propellents, which

presents the combustion speed characteristics for positive and negative

r3 113 r p e r'ponentS

The Cor,aula which is derived when the covered surface area fractior, p'

is zero, then becomes the "two parameter formula" for

propellents with binder agents which are difficult to 'rielt:

nAB
A--(1 +A)+AB

* i :-i .3 y 0 -is .rn~fed expression we already have for the "gas phase

quasi-steady state, uniform propellent unidimensional model"(2), this

article consequeitly derLives:. foruaula which is capable of having even

broader applicability.

This article, before deriving this formula, made no s~aall niumber of

enpirically quite significtnt a".aptions. Tor example, the assumption

that the 2ongealed phase layer which gives rise to the congealed pha3e

-action -rid the gas ificati- rCstii on is ra infinitely thin plane i!3

1r'Ga ly nct a1 good approi.-<tiorl(2) The assumption that the gas phase

t A:1 t :3s dy t ate has an error less than 10% only when the
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fre1laecies are smaller than 10,000 Hertz(2)(5). The compressiblity of

propellents also has an influence on response functions which is within

10%(9). Heat radiation losses, ,under certain conditions, also have an

obvious influence on response functions(10)(11). As far as congealed

phase reactions are concerned, in our stable state model, they are

basically pressure functions(1). 'Ioq ver, we also conveniently saw from

our mathematical treatment, that, when their inflaence on pressure

diminishes , error is, naturally, even more unavoidable. Although,

except for congealed phase reaction problems, the majority of assumptions

aree ob\ious, they are also universal in their application. However, this

explains the fact that the formulas derived above are still awaiting

refinement.

At the sa~ne titae, formulas derived on the assumption of homogeneity

can, of course, only be Lsed in situations whc-,re one has homogeneity.

iowever, due to the fact that propellant impurities have already been (57

used by several scholars (12) in methods such as the one that follows

that is, taking a fiulti-node co qposiL te propellant and viewing it as a

finely dispersed oxydizer granule/fuel "surface match up" of random

arrangement. When one assumes that each "pairing" is mutually

indpendent, then it also b co,)es po sis.Lle to take the propellant surface

and rearrange it into a family of hypothetically dispersed units of

propellant- This is 4hat is called a hypothetical propellant. And, the

pressure responses of these hypothetic~l fuels are calculated using

f'ormnula3 dedced fro.r homogeneous theory. Moreover, from this one

obtains1 ,.t p.r.sure response for the whole comaposite propellant. Just

as is pointed out in reference (3), although this method has the

drawbacks of two different models in its application, it is still

currently being followed. Because of this, this aolel certainby dues not

fail to explain pressure pairing problem values for composite solid

propellents b7c-tii.e of its adoption of a ho;mogeneity hypothesis.

5, Conclnsions

. S ' yt tte - 3i 2')QbuStionodel For positive and

negative pressure exponent combustion speed characteristics for solid

pr op elI.,t.s, we deduced a new pr7mr's respons. .  ,ch _ ) r'n. 1_-. Tqis

' .plai ns, in a reasonable way, phenormena associated with unst:nble

>)Q Jt3orl ,,Jh.h exists in all solid propellants with positive, nerative

. , 'ro pressur eKponents.
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2) In the salae way which was the case with the forming of a model

or 3teady state combustion, in the combustion of propellants, the

phenonenon of nolten binder agent covering oxicizer sarface area should

also be considered in the forming of a model for unstable combustion of

solid propellants.

3) Using the unusually regular combustion oL' the 0,areled phase

reaction and opposed gasification covered by molten binder agent to

-eplace localized shut down is a precise and necessary method. This is

trnie not only for steady states, bat for non-steady states as well.

4) Th e 10 1 p 3 nteA in this article is still awaiting further

e9perimental testing and perfecting.
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SUMMARY

In this article, under sirnlated engine conhustion cnrh er' p.'e.sz1

conditions, we carry out an analysis of and calculations for the dyTncL<,>

of the ofan-axial rotation of flexible jet nozzles. The important

q r t.nti icncl Ie: .analytical calculations of measured data; analytical

>-,:ilations for the center of instantaneous oscillation of jet nozzles;

aol, calculations of the moments of force of oscillation. Besides this,

qe -a.so clc,-ated the para aeters that follow: the angle of osc .lltion

aql angular velocity of jet nozzles; azimuth angles of oscillation; t:ie

length of operating tubes; eccentricity of thrust; and, axial and radial

iispl.acenen of jet nozzles under differing pressures of contents, etc.

This niethod of calculation, after having appropriately resolved the

p,-)bl.i, 13 Ln.alTIL.g te etry pickups, is still suitable for use with

hst test bels and is also suitable for calculations and measurements

uiner conditions of static oscillation of flexible jet nozzles.

I , Calculations of Adjustments in the A noants of ,L.pl.cennt .ni Angles

of Oscillation

(1) Selection of Neasuring Equipment and Coordinate System

The apparatus for measuring simulated axial oscillation of flexible

j 3 -Z 3 snq'oqn ig i. The flexible r'nnecon heal connects

* aptiely with the end ring and the lower flat plate. They and the

ontiner shell body together fora a sealed high presure vessel. To the

a;t, i' plate s firiil.y attached a rod (simuli-ing t-i r<; .

ts a-xi! lne and the axis line of the f' -Kible ..o.ctor- hea are

congruent. Its poin? of contact on 1 ee t o.[gn ot the

- 0) A- th 13 t' ,as e :>ntent pressure is zero.)

The a )s OZ s then congruent ,.qjth tl tx's IlIns o the rod.

The top end of the rod and the axis line -ire installed at

l . t ' ' ,.t ,. . a , :' . I c .Lel the Z plate. The axial
s >, ) th lsolaceneat sensor Z, [ congruent wit- the -fxis l'ne ]f

,,. :, :-,; . " i r~ec ::- n r.oont of thrust .re aoit "Xl.' y tuto r

*~~~~~~~, zce in 2. wi -r' r -0~t~c. ff~oe Li 1 H

(I n)' Z T n ,his gay a-j fie c rI T 3. 3 O.. .. Z
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is then established. Two flat plates are installed on the rod.

They are respectively perpendicular to the X axis (called the X plate)

and the Y a is (called the Y plate). D :plaeet snr.3 A',.X,.,

and Y2,.Y, tre respectively perpendicil;-tr to tln. X

plat-" and the Y plate. Moreover, lines extendinq _rm ,

and I' , and X, and ', connect respectively with two points on

the 7 K ii. Their points of intersection, with coordirates irl ths

dimensions, are (O,O,-Z,),(OO,-Z,) An extensLon of tri X,

axis line of the displacement sensor intersects with the OZ)'

coordinate pl~ane at point (O,-Yo,-Zz) The 7tr T-0 Th1 i the X

late an, th Y plate to the coordinate poi.qt is R. in both

cases. The other t, o displacement sensors H, and iI. :' ip tively

neasure the two actuator tubes fixed to rod points Q, aft

t ra- oT the anoIt of aia displacement caused by elastc deformations

Besides this, the radius of ,.e-r-ure:aent con!-ct heads for

displacement sensors X,.X,.X,,Y,.YI is in all cases. The

radius of the measurement cont-Act head for sensor Z, may be s ected ,

will. Let this value be R, The rest of the L .ala_-L -t -o:3 ;a1

and stractiral c)rstants are a shown in the Figure.

F. (. P, P and F, 'or P, ) are activating forces (or

pr'essure differential) sensors.

?_) &na3ly:-i8 OF Dilcerient 3ensor Measurement Data

mo . t" ei7't di-:placement sensors, eccept for the ,aeasurefasrlt

. H oh there is no need to cor re ct , te ie-isured

.,± i -Y:'; i~ h'roa the other six sensors certainly does not perfectly

r Il!ct th]e -to,'it of displacement in tre oscillattion of the rod. This

i-. due to the reasons set out below. (60

i e measuring contact head of the sensors is a hemisphere.

. A ' , ,' --I r vs in the angl. oF oscillation, contact points

i lklsplacement along the hemisphere, introducing an additional

•:?fount of displacement.
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Fig. 1 Schematic Diagra'a of Test Eqiipruent 1. Plate 2. Rod 3. Lower

Flat Plate 4. Upper Compression Ring 5. Flexible Contact Head 6. High

Pressure Container Shell 7. Actuator Tube 2 for Controlling the

Direction and Amount of Thrust 8. Plate 9. Diagram 10. Plate 11.

Actuator Tube 1 for Controlling the Direction and Amount of Thrust

(2) The measurement contact heads for the variouis displacement

sensors X,X:,X,,Y,,Y, and the contact points of the

experimental mne;. .4u' A; )lates are at a distance from contact points on

the rod axis line X, nid fron the symmetrical surface of the rod so thit

the distance varies with changes in the angle of oscillation.

(3) 3 ae ;se of the fact that the axis lines of X, Y, and Z rotate

at the same time, their natual influences cause plates X and Y to

correspond to the slant which occurs in the sensors. This intrjod.- -,trI

anount of non-displacn , ., t izo,'s.
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(3) Adjustment Calculations for Angle of Oscillation and Amount of

Displacement

Let the angles of rotation for the axis lines X, Y, and Z be fl,a,0

In order to simplify analysis and clilatos, we *1aie use of

the geometrical principle of superposition to make a two step

calculation. 4fter that, we superimpose. That is, first we ;tke

: ,Alc.ilations for the situation in which aO -tnd 0*0 , with 9=0

Then, we make the calculations for the situation in which

a40,040 and 040

(1) Adjustment Calculations for the Situation in Which a*0,0*0

and we assume O=0

There ar foar types of factors in orni-axial oscillation which

cause adjustments to the displacements measured by the displacement

s en o r.,, : (a)a>0,f<0;(b)a<0, $<OJ(c)a<O,fl>O,(d)a>0,fi>0.

T0 ' cil i~rt~o ~Lne 'p one type o' -Ltaa~tion.

7Bcce:ntric rotation of the axis line within the first apparent limit

If we assume that the cross section of a rod is a square 2R on a

side, then, Fig. 2 is -t c.bic J1iagr ir o ,)p Ig . a , id -tgle fi ;' the

deflection. Fig. 3 is a horizontal projection diagram corresponding to

it.

Definition: The plane which holds the displacement sensors X,:,

and Y, (or X, and Y, ) is the horizontal plane oF te.3t

measurements. The same rod cross section used in it .s reprsented by MEFGH

I! r.ie suv that a[is line Y rotates through angle a and

, ,<L3 line X then rotates through angle # , the ,hnge in the horizontal (61

plane of te:t ,i, -. surements is: squarp :3E.,.G.H,-. elongated square

2JE'F'G'H'P quadrilateral =EFGH . This corresponds to a

change in the contact poirnt of the experimental measurement head of the X

displacement sensor: A-A1-A.

4t point A, a=O.0=0 . X( sensor measurements

give 13 a dispirc)-nent a'no1nt X\.-O,A.O=R
At poinr , a>O,6=O The I,-IL v)mnt '

dis l-ocrment is X'. The 'Lctual 0,0int O, IL 3pl.>,'1.nq ' X=QQ

Tne of t'e i ll ,ioqll amounts of d1splocn.nt is:

AO,-A,O=R/cosa-R
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'Fig. 2 Cubic Diagram of' the Horizontal Test Measurement Plane When a>oQ,$oOO

H'Cf

7'igl PI Pane Diagr a.u of' the T es t Measur e-tierit ?1P-i nie '4-i a>O,fi<0,0-
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Prot the diagrams it is .possible to see four amounts of additional

displacernent caused by the displacement of the contact points on the

contact heid3: AoA. =OA -O'Ao=R/cosa -R.

X'=X+(R+R.)(I/OOsa-1)( )

At poinqI A,. a>OR<O Let the nuerical data measured

by the sensor be X' -From Fig. 2 or Fig. 3 it is easy to see that

the value of the difference between X" and X' is A;'A, .

The.3e are three of the amounts of additional displacement caused by angle #

oa sensor X . From Fig. 2 we obtain the set of relationships

set out below;

Fro:a RtAA,A2A,' we get: A;A'=A,A;'tg=Ytg6

Proi RtAA,A;A'; we. get: A'A,--AIA;tga= Ytgatg (2)

,.%o a RtAAAA'i" we get: A'A,=AA*'tgr=Ytgr (3)

Compared with equation (2), equation (3) has: r=arctg[tga.tg,6] (4)

Because A;A,=Ytgr<O , we also give consideration to

is ti. 1rg the geometrically equivalent relationship, and we then have:

- X'-A"Az=X' (5)

After we now do some more analysis of the deflection angle R. V

the four additional amounts of displacement which are induced in the

displace.neqts of the contact points on the ;aeisarring contact head of
displ emnwnt 3ersor X can be seen from Fig. 4. The contact point moves

f-)I point A, to point A,. : that is, it rotates through angle ZA:O'A,=r,O"A,

=Rcosa, Because of this, there is always a positive

.R.owai'(Ym r'wL 1) (6)

When one combines this with equations (1)(2)(5)(4)(6) one gets:

X=X'-Ytgr-(R+R)(.J 1 1) -R.coa( 0 -1)Cosa c os r- - (7)

Belo-, when ve m iake 'djast,!ient calculations for the 'aount of

'p 'a -asred by the Y direction displacement sensor. We

•iailarly have:
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At point Be : Y=o B.O-R

At point B, (8)

At point B, B;'B 2=Xtgr (62

.Atgr<o , it satisfies the equivalent relationship
• Y"+B*'B,=Y'

- X tg rY' (9)

The aldlioal amount of displacement caused by the angle a is:

R, cosfl(11/coa- 1) ( 10 )

From the various equations (3)(9)(10) one then obtains:

Y- Y'-X tg r-(R+R.)(1/coefl- )-Reo(1/cwr-1) (11)

(2) Calculations to Adjust the Amount of Displacement When the

Angle3 a,B,O Are 3iqt.1It irojxsly liot Zero

As far as an ideally flexible contact head is conerned, one has

only the times when the azimuth angle of oscillation 0. is 45 degrees

and 225 degrees , making use of forces, the combined force of which

Ocosses over the axis of the jet tube. In the case of oscillations with
other azimuth angles, making use of forces the combined force of which

1)ii iot it -1. >'oss the atls of the jet tube,adds an additional moment

c) 9orce to the axis line of the jet tube. In this way,the jet tube

oit's around the Z axis line, the angle of which is designated 8 •

Oing o i-aci.-l oscillation, it is only possible for the angle 9 to

be positive or negative. If one gives consideration to a,, the

overall influencing factors can be grouped into six types of si. ttva',ions,

00" - ,<45" O<O,(a>O,fl<O)

45"< 0.<900 0>O,(a> o,a<o)
900<0,< 1 8 0 0 0>O,(a<O,0<O)

1800<O,<2250 0>O,(a<Ofl>O)

225°<0,<27 0 0 0<O,(a<O,0>O)

270"<0,<3600 0<O,(a>O,$>O)
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E 0,
A : "_.

'ig 4 ove-aent of Contact Point on Measuring Contact Head

Fig. 5 Diagram of Rotation of Horizontal Test Measuring Surface R<o

Toing through a practical derivation clearly shows that the six

situations all possess the sae type of eTp~e55ion. In this case,t i-s

ornly necessary to do calculations for one situation.

O° < € . < 4 5° , a > o , fl< O, 0< O, X > O, Y > O

0 is the tngle of rotation around the OZ coordinate axis. It is

), ) '' -i-i t ' t ii,) -)t'rtL -t .,i ierent surface rotates through

e in the same way. Analysis of the front surface down to the

-niitii--il i.nluences of the angles of' deelecton a ani d cau:3e the

hor.';zor',;al best neasurement surface to give rLsq 6) ieorat.oi. Ater

reecing adjustments, a and p are used independently to cause the

horizontl test fe;iaurenent surface to give rise to deforations in CE'F'G'H'

a," ii te liglrarn, -nd rotate it through the angle 0
...... ., ing , as shown in Fig. 5.

'r"r- ig. 5 one can see that the angle 0 causes the X sensor and

:4- :,u .,l;i tio al - : m1-t of displac-'B oent

b
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Solving for AIIA, ,the D point coordinates are

{Xo9=X+ODcOO
IYD=Y-O,D sinG

A0 1,-0 1 D,, RAO-X'- X+(R+R.)( ,-)XAO

(63
.ODAO1 (RR.)cos ) also because DC=ODsinG<O

therefore, the D point coordinate should be:

XD=X+ (R+R.)( cx a1)Cs

Y0 =Ya (12)

Make HEP and HA'E# cross at point J. Then, the equation

Cor the straight line DJ is:

y ±-(X X1) +YD (3

A'L(o XI=X rlXt-3R 1 -f (14)
\cos a I

~ '14) -tai 31abstitute in equation (13):

Y,=# - (R U + R,) - 1)(1 - cO)l+Y+(R+I.si0tL \COsa, co a

Vry RtAA7 .A3J we~ get: A"A, =Y,igO0
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From Fig. 5 we get the geometrical relationship

A30=X,A'A.=y,tg0<o .0-~ 2 A:~,

JI3 bsi- !-t !ng the v-trious algebraic quantities and sir-.plifying, we get:

T~i solvinrg B-, B.'1.,3e '- pr'Oe,_ jL 1'Th_!ta to J. s1 I n

3*0o Vingl fo0r A"A., and we obtain an S point coordinate which is:

5X3 X- (R+R.)(', 9 -I)sinO (8

Ys=Y+ (R+R)(' ])Cos

Let E ...F... and E#F# cross at point Q. The straight line eq-jation

Of 3i

Y= ig O( X - X.) + Y. (19)

The '~point coordiLnatLe is: (20)

Yo-Y' -=Y+ (R +R.)(

2~~ ~ t i1 1 ?)(1) vnd sub-3ti'a-( 1h ,l~ iq -t ; rn(1)

Xo=-L(R+R.)( 1 -1(1osine-R+.) (21)

RtABSB,'Q L3U po;3sible to obtain B',B 8 = X 0ts

0 r B7*B.=(R+R.)( -- I) (1- 1 +Xtgo ( 22)

The goo3n.a relationishrip h-as the forma: B. 0 -BB,.B'.o
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.j32,= XotgO0<0 at the saine ti-ie, a~'ter giviig conrideratiorn to

the 3airposition qaatities -for 'U. 2B2 one then has:

Y=Y"-X(tgr-tg8)-(R+R,) ' -1)- (23)fl'-1

'Equationst- (17) anid ( 23) are the equations for ca-lculating the

-inodnt oC~ displac-ement adjjistment which is measured by the displacement

sei--nsors: ini th ! 7 and Y directions3 during ournni-a~ial osciLl-ation. The two

are both functions, a-nd, set up together, they can be solved for an

equation through which the amnount of displacement (X.Y) can be

-alcul; t$,d from the measured amount (X ',Y')

x Y ;(tg r,+ tg O)- (R +R#) 1 (... __

I1- t8

(tg ri + g 0j)_ R, 1)ticoa,-cosfi(tg r,+tgO,)J 24

+ tg'1Oi

COD, CO., OGa
Ig Ir,(25)

tg r i tg 0 R. 1)co 1 cs a tg r, - tg 0)]

+ tg 10

R,, constants; ai.,9,0 are calculated frona the

':3) 3&lzilationi ol' Angle of Oscillation

FrorQ the defini'.ias ol' the various angles of rotation one canr

ta 4 f(1-tg~a,tgOl+tg2O,)Z. (26)
Y2 -. -fl-': ±(X;:-X)(gatgfl-tgO,) (7
I- (1-tg'a,tg'f,+tg'O1 )Z. 7

>l. it';or~ of the Angle :From equation (17) it is

pD331ble to obtain:
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x'i=X:-Y.ctgrj+tg,).(R+R.)( -1)L~-R cosi -Sosai CMO, k cOs r i

Thro gh ,,.action it is pQs$3ible to obtan:

X,,=X,,-(Y,,+Y.)(tgri+tgO,)- R+R,) e , -oO

-RCcssai (os8)

tfo=Xn-Xr X ;:-X ;. o am u t (29)
Y, 2Y.,

2q1<t ons(26)(27)(29) are a set of implicit transcendental

equations.. Using the iterative substitution method in a computer

ipplica- tion, one solves for values of a,,flj,Oj After this, one

thel -,n '-3 b 3ti t 11t: 3 equLat ionrs ( 2¢) arld (25). It is then possible to solve

for X,, and Y,, for the various amounts of displacement.

(4) Adjustraent of the Numerical Data Measured By the Dlispi-laceaent
)9nson Z

(b5
Definition: The angle of oscillation is the angle included between

the geometrical center line of the jet tube and the OZ coordinatte a~is.

It is expressed by the use of . .

The nu~nerical data recorded by the Z' sensor, alone, due to the

_q 
. o,$ -].ant on the Z plate, introduces an .dditional a~ount of

ii.3 .Menrnt. roreover, this angle of slant is always equal to

oscillation -1 . 0 'or' to sY1_,e 7or this osci~lation anghe,

e .3-i; CL.-. s,mVe 'Or' the direction number of the geometrical center
in~e

A= X ,,- X ,i;B,= Y,,- Y ,;C= Z,- Z=Z

(30)
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c
Oscillation angle tCO 

(31)

Adjustmaent cal -,alation for Z,: Z3,,Z; -R. (32)

In a heat test bed situation, it is possible to make use of two

.i3ps.O.t . C Z,,, - -,ilI Z, Liq order to replace sensor Z, . Z3 .

A, Z,, . in talled symmetrically on the two sides of the jet tube in

order to avoid igni.tion flame heat corrosion.

As Fig. 6 shows

JAII
0 *O,.

9a) (b)

y

* . : .a) "hart of Sensor Distribution (b) A Comparison of Sensors zIA

zn o, to Sensor Z.

It i s easy ,o d -3v ,onS U U , -e , e n Zaa, ZIA qnd Z3

there is the relationship shown below:

Z'=(Z; +Z;;)/2 (33)

(5) Adjustment of the Coordinates of Actuator Tube Fiing Points to
2 rit'oi the Di~ec;tion -3fd ,Xrio ,t )C Tnr,.;

Di e tO) iG) ,~,,-olU O )o-r 31re contents ari n the Ors 1-3:d Lt'lh

'tuO: t)ubes, the displaceinent of th A rod -i A g n) J . t 1 ( '>3

'I 0 To're 5ra . This not only produces an in /.,i ,-W - D-i ti ,  ' :,,

o -' : o e .actiator tTbes t - ) reIt t - to the i I -' , ) ) .

,-orces used arid the force momentum. Therefore, it is

nIece3-',ry to -nake aijustm'ents to the neasured amounts. Most of the
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amount o ;he 0chnge L 3 aIlong tha diLrection of the a(is. Therefore, the

adjustmnent is approximately:

Z o = H + H i 
(4

Zo,= HQ + H'i 5

in the equations, Ho is the coordinate of the rod ficLng point. H',',,H;'

:.re the values of the amounts measured.

(6) Calculations of the Motive Forces F,, vnd F2, Used to

Control the Amount and Directio, o? Th-,st P,

As motive force one can choose to use the tensile pre33Urte en.sor
.ontact vissarernents obtained as F,, and F,, . Or, one can aeas've the

pr' esire di ferential P on the two sides o the piton. The force used

is then:
Fi,=SP

In the equation, S is the area of the piston, j-1,2,i=1,2,...n

Up to th e pr'.: ent tiWe, ge have solved for the following parameters.

X ,,%X ,,,X~ ,,Y Y ,,,dZ3,,ZQ,,,ZQ,,,F ,,,F ,,a,fl, ,0,,r , i, ,, Bi

a-id C , as well as constants to be used in later calculations. It is

not necessary to ecplain these for oar purposes here.
(bb

2, Calculation of Center of Oscillation for Flexible Jet Tube

i C-, .pr_ I P C :P2?,{ )q k 'SC u Al P '[

As fir as the concept of a center of oscillation for flexible jet

th.bs is -oncerned, both inside and outside China, there have been

-~i.~' I' oqber of technical reports. But, these reports have not

fond a clear and precise definition. Moreover, there have been several

,wethnos put forward which *-re ob r'tn 1 ,n- . 3-fore naking

c4.l,, :ons oF the center of oscillation, we plin to have a clear and

,prcise concept to act as a th-r,.-t tK 1i % -inalysis and

a- I Cl]..t ions.

u ' r d :.- rst od in t ie

0llri g .r s . T (I Uh C' r )A1 , -, ,.-.re -re, of course plane

o ; i a~l s ka',ing place ' i , . - t . - lltions (onni-axial

: I;.l lon) . Both of th-.-e exiszt - 1 ' .er',z-< of instantaneous

.;i-l rotation3, and no lnstant i rqi ; - " nter of oscillation exists.

Obviously, a jet tube is a rigid body, n l enter of oscillation can
chanqe.
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Flexible jet tubes also have a point which Iictions s the;r

theoretical center of oscillation. If the design and nanutacture of thl

flexible connector heads are both absolutely ideal, this leads to the

flexible jet tube rotating aro ql the sae PIKed point. What are called

its instantaneous axes of rotation all pass through its theoretical

center of oscillation.

Absolute idealization of flexible jet tubes does not ecist. In

reality, due to content pressure (or combustion chamber pressure)

changes, flexible jet tubes are made to produce relatively large amounts

of axial instability. Besides this, flexible connector heads do not have

uniform distribution of material around their circumference, and, during

oscillation, their acceptance of forces will not be entirely syirietrical.

It is also ilapossible that the deformations in the flexible connector

ha--, Vh ch "-t 3ti ed bj this. should be symmetrical and uniform. This

4ill also cause the instantaneous axis of rotation of flexible jet tubes

not to pass through their theoretical center of oscillation. When

f le3ible jet 0ub3: ,.1r'go an!-aLa oscillltion under various types of

content pressures, the series of instantaneous axes of rotation will

forn a cylinder-shaped included figure. This figure will be symlnetrical

around the center of oscillation which will be in-.,-lded in it. Th1-s is

called the "oscillation center" for short. This is also nothing else

except the actual oscillation center of the jet tube, the size of the

geo et cal ,iqensions of which reflect the qual ity characteristics and

r. gitily of' th flexible connector heads.

!_ o, ri i is,er -g dir'e t1. solviLg f.or trie geonetrical range of

the included center of oscillation, it is necessary 7o have dense

instantaneous axes of rotation. It is also necessary to a',v l.rge

amounts of experimental data. It is difficult to get to this pout, :v l

it is also not economical. On the basis of this special characteristic of

j .',; t . -'., '.:. * -r')d these fi ed points, it is possLble to re-tch the

i)-iion which follows. The instantaneous oscillation center of the

geae) < ; 1. (te,- I o jet tabes, is always a reduplication of this

.. il point. Thi3 Cf1 ,, .I tK h oscillation center

- jt ,, b. Because of this, we then use the instantaneous

'.3c.LT, tioD center o the geo netricl center line of a jet tube to

replace the point center of oscillation of the jet tube. By ,ln,.3 )I^
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this method, we use a limited amount of experimental data to solve for

the g-oerical size range of the j et t ih: 0 3C i-1-t L*tLO 2t ,e C. "4()r -')\1e,
this suipplies a reference point for solving for t'ie Lri.-tantaneous raoment

oC force of oscillation.

During oscillation, if the geometri>,-tl i<l'~ "3 ~(~

other, the results of the calculaitions discuissed above ,- -a I-tl

accurate. iloweve-r, it i8 also possible for tn-euw to be :iLutualiLy off and

3to . ri s uch i case, one theni- ta1,? ,f i-L vr ae Sosc-illation

We" vl sl\Ts 7o theoscllaton etr. 'bviously, tie -sults of

this are approximaate. Thei degr-e , ol' th (atiD1 vtries with and

increases as thie da;,ree oL' gsr-idati'or o t'- n't<1 slo7

os cillaRtion is reduced. Experilnent;-atio')-, w hi~

rqeasuired angle of oscillation is ch-tng.el '-o,,e~ to 1.5 degree3,

ted.l-staice between two adj~-icenrt dr~t~L IsJops Lfrom

70.5.1iri tUo K Irugl rpaisg.

3CTUI,4'Pl0q OF rpME OSCILLATION CENTER 9&)F r"'~ ~ JBES

In order to siraplify the discuissiori, t -i t '~

lirvl of)i the, jet tube be the Z' iais. Thnis -3 s- ri ot t'-et .3 a q -Lt t' i

axis o'f the oordinate system.

Th e Z' axis -cqaatiori 'L.: A,=-- B, -Z 1

v 1: ~r-qiatoifrteZpaep -n AX+BY+C(Z-Z",,)=o 5

The sat of s nl oe Iuat ions ( 53) "36) give-'s -

0 i ae!3 fLo r the 0, pot 7. T1 0, i~~

=CZ,,-A 1Qj-BiP,
.A, K, +~ B1 + C

Ye =ie +*±

62



(67

In the equations K,=A#/CQ,=X,i-K,,Z,; L,=BI/CP,=Y,,-IZ,

The O, point is a point on the Z' axis. In the initial

configuration, it is a duplication of the origin point of the coordinate

T3 steia.

Tf we poitulate t~qo -autual.ly adjacent i s t:-t, !;a p1 ane at 0 which

contains the instantaneous center of oscillation is a,, . We then

have:

(x- x.,)' + (y- y., )2 + (z-z., )'= (x-X.,)'+ fy - y. )

+ (z-z,_,)'

After re-rrangz,aent, ,ve get: x,: A,,x+B,,y+C,,z=D, (53)

Tn the equations

A A o- xoix ., ;Bi=vyll- yqj ;C,. = z, -zo_

In order to solve for the instantaneous axis of rotation of jet

tubes, one must still find a second point on the pl.tne on Vhich we

find the center of oscillation for the time interval during the same

period. Let this be the intersection line of the plane =,,, ,, and the

plane , , and one then has the instantaneous axis of rotation.

T3- 'use o' the fact that a measurement error in the system is

(I -- , \ 11 i o. hen I"I,±a,, that the degree of precision

!-3so,3 ated with the ax;-3 of rotation which we find is optimuca. The O,

poin i3 a .'iiel poirnt on the jet tube axis line. Points which satisfy

l , _ 4l1. i,.%r 1Iith changes in the oscillation of

The j.l; tibe. The method for the fixing of coefficients is none other

thin ' n aiceasting pursilt of these points.

If we take the plane M1 , and set ,,

A,ix+ B,,F+C,,z=D. '9)

-f we 3 o1.i the ,3i~aal t'aneoue -qc~lvt;_,)nb (,35) - 1. (5,9>,

2 - - . Y :.l;) 1 '" o p ri t of l., 11'1 the Z;- :<3 "9 E.,( x, zs,,,
,When ore solve, we get the result:
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The coordirlt'es: Cor point E., (40)

x, K , D. + Q,,

in the equations

=. 1/(A,,K ,, + B,,L,_, +C,)
,,= - (A,,Q,_,. + B,..._,)/(AI.., + S.,,_-C.)

KC C -K_,s K= L._,K ,
Q,,- K,_,.Q,, + Q.,_, Q,, = L,_...Q , + P,.

"4ke t h' +e. t~o , O Iqt of plane go- and axis Z: b E,(x.,,y,z,,),
W.l q 4 )-,9 q, oe IT " lt:

,Do-iinates for point E9. , PZ,-- 4,t - ,- - --Z ¥ = L s.,D .,-, P ).
x,, L,D.,BP+. C(41)

Y., -L :, "- P:,

in t'Ie eq'.<> 1 7:3

Lr , A K, + B,,L, + P ..... . ',

L, - KL,., P., Q, + K.P,,
L L .. P, P. + L. P.



(x.,, X.:)' + (Y.,-,- y. ) + (z.,-z,)' = (x, - x,, )'

+ e(y - y,)f -1 +C z ,- z,,)1

(68

. o t'1, (13 "(40) and (41 ) and substitutes them in an

c pa o3n trr-igernent, one has

U.,D.2 + V.D., +W.,- O 42)

in theK,!toq
- U., =13, +i,2 +1.1-A8K, - fK,.

V., = 2[ K, ,( x.,-, - Q,, ) + K,,(y., -1 - Q,,) + K,,(z.,_,. - Q,,)

- L , (x,-P,) - L.,(y., -PP,) -,,(z.,- P, ) ]

I., = (Zc., - P, 1)' + (ye, - y,)' + (Z, -P,, )' - (Xa., - .

- (y., - Q,, )' - (z.,_, - ,

2 )T\fng eqluation (42) we have:

D.,,. 1f .2 IV J .: 4U.,W., $3

2U.,

D... , is then the fixed coefficient we were solving for. There

-3 wts of sol. tions. Hiovever, co r rponinrg to or --ctii probleQ,
4;'.L- t, : n n tiol - ' 1 hch z., -ind Z, '-tr'e i,iaf t w iosly smualler

,2 , ,er >1 : '-le Thiereore, we take the two solution sets of

s . , ',;',q r-sps ti elj into equations

4 anv i4 ). ?f'o, t,,- principles discussed above, we decide and make a

1 i. Recause- of this, after we make a decision, the ,solitions of

, ] " "; , t'l .ri it po sible to solve for the

ill ,. w,,ir h i.9 located the ,-3 iult-neous oscillation center for

PI . '. " r over, ItI ,. Its

A,,x+ B,,y-C,,y'.D,,
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in the equations

{ A. = x -x,, B, y., - y., C, =z., -z,
D,, =(x,:. +Y,'- +Z,, -X, so-Y." -z, )/2

The line of intersection between planes Si, and Ka, is the

instantaneous axis of rotation we are solving for. Below, we also solve

for the plane of oscillation of the geoaetrical center line Z' axis of

the jet tube, and we let this plane be

During olani-axial oscillation of flexible jet tubes, the most

g<13",- CLt.'-Ltion for the track of the Z' axis is a curved surface in

T9 ,Je take this curved surface and divide it into n partial

curved surfaces, and, respectively use a plane to approximately replace

their various oscillation planes X-i , it is obvious that, when the

dissected areas n are inc,-easel in naiiber, the level of the

approxiration is raised. We select the number n so as to satisfy the

r&-qlretnent for precision which happens to exist. In order to solve for

the oscillation plane X, , one first does the calculations set out
belo::

(i) The direction number St of the common perpendicular line

beteen the jet tube axis line Z.1 and Z, for two adjacent

LT3 ;1,nts.

hake the direction numbers of the axis lines Z,., and Z

respectively N,1 and N,, , then:

N, {A,_1,B,_1,C) x {A,,B,,C} {A,,B,,,C,} (45)

in the equations
A2, = C( B., -B,) ,B,, = C(A1 -A,_,-,); C,, = A,-. B, - AB,_-,

(ii) Make plane RI_,, contain axis Z:_, And, make it

r &A.l~el to N,, Then, the equation for R,-, is

R..,, A,_..., B,_.,, C =0
A,, B, C 0
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Or it is: A,,x+B,,y+Cz..-D, (46)

in thea: e'1a t ions A,,=B,.,C,,-B,,C, B,,-AzC-Ai,C,,

Cs, =A,_,B,,-A: 1 B,- D , -A.,X.-, +B.,Yi-, + CsZ 1

(iii) Make the plane Ri, contain the axis Z' , and make it

parallel to N,, Then, the equation for R, is: (69

x-Xi,y-Y,,,z-Z,

R:I Ai, Bi, C =0
A:, B,,, C,1

Or A.,x +B.,y + C.,z-D,, (47)

in the equations

A,=BCt,-B,C; B., rAjC-AC,,
C,=AB,,-A,B,, D.,=A.,X.,+B.,Y,, +C.,Z

The intersection line between the planes R,_, and R, are the

mutually perpendicular lines Z,_, and the Z axis because of the

fact that the direction number ., of the line of intersection is

e;lal o the ector aea (N,,xN,,) of the direction number of Z:_

and the Z axis.

The various simultaneous equations (35),(46),(47) necessarily make it

po3s*ble to solve for the intersection point of the mutually

pe.p) fiicalar lines of the Z:_, and Z axes . The reason for

this is that the intersection line of R, and R,_,. is located on R,_,

on the one hand, arid,, therefore, crosses the Z1-1 axis, but, on the

other hand is also located on the plane R, , and, therefore, must

necessarily also cross Z; , as is shown in Fig. 7.

(iv) In solving for the intersection point Ed, of the mutually

,- rpendicular lines and the Z._, axis, take the equation for the axis

rti Z,_, .,r: chang .  l to ', o' , he Po ::a o a parafnetric eluation.

Pro-T equation (35) we get:

x,=A,_jt+X,,_, (48)
y B,_,t + Y,,_,

z-Ct+Z,
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. Z

Fig. 7 The Nutually Perpendicular Lines of the Geofmetrical Center Lines

for Two Adj-t , ei T-tint3 Diritg Jet Tube Oscillation

If we take equation (48) and substitute in equation (47), and, we

also make t=K. , we then have:

Kd = (Dr-TA$,Xi,-,- BsYii_,- C.,Z,)/(A.,A,_, +B.iB,_, +C,,C) ( 49 )

If we take K., ,ind make iterative substitutions into equat*io

(49), we then obtain coordinates for the intersectton poLit E., o1.

the mutually perpendicular lines:

E _ ,, y . -, = A..,K 4, + ,(50)

Szt,, CK,,+Z,

(v) Ti solving for the intersection point E. oC the ,Itually

prperiicular lines with the Z: aqxis:

T' no -the ,st-aight line equation of the axis Z. to a parainetric

form:

x=A,t+X,,
y y'Bj +Y,,

z,- Ct+Z,

t 51)
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If we take equation (51) and subatitute in eq-i-ttoq (46), and Lie

then make t-K , we have:

K.,- D,,- AsX ,j- B.- CZ (52)
A,,A, +Bs#B, + CC

If wie take Ki-t trid make iterative substitutions into equatioti

(51), we get coordinates for the intersection point E, of the mututllT

perpendicular lines Axi th. aci 3 Z:

E ",=AK,,+X,, (53)
E,, y,B#Ks#+Y 1

z, - CK.,+Z.

3t i.- :lj ts '-e that the points E,-, and E, are certainly

not the same geometrical points on the axis line of the jet tube.

(vi) Coordinates for the center point Eg of the mutually

-p-p- r icular lines E_.,E, (70,(70

""~s , (X. -( 1,_+ x jr)/2
Coordinates for the point Eel XE .,.'(Y,_ +yr)/2 (54)

Ze., - (z,-, + zj,)/2

From equation3 (45) ind (54), it is possible to obt-*n rite pline of

o 'hll.tL) I ,,. r-,)q .i-ist ,nt t_, to instarit t, of the geonetrical

or A,,x+B,,y+C,,z D, (,55)

in i i -,1 1t r:z A,,,B,,,C,, ire tr - 3--tnv A; bfo)rl?.

D!. .4 ,,v s,, y,,, + C:z7

6 9
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The system of simultaneous equations (33),(44),(55)

A,,x + B,1 y+C, C D
SA: x + B1,y + C,1z =D,

A-x + B,jy+ C,z= D,

nakes it possi3ble to solve for the iristantaneoas center of oscillation of

the geometrical center of jet tube C,(XCJ9yC,.:C,). This is

also none other than a point on the center of Os LlL;,ioni ol t>,, jat

tube. It is possible for this set of equations to be solved ' r-) 1-

the use of a co!puter. Therefore, we recognize that x.,,ye,,zV, are

,ilre~tdy known. Later, we will make direct use of them. Fig. 8 is an

~i7 t .hi.J. i_ g,.Q ,aC the instantaneous axis of rotation of the jet

tube arid the iritantaneois oscillation center of its geometrical center

line.
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3, Calculations of TIo'ents oC ?or:ee

The systeins of moments of force which we are solving for here

point, ,inder differing desigriated wave fornas, to a 3elected series of (71

ins ,-tnts (or, one might say, angles of oscillation) to figure out the

overall instantaneous moraent of force. The focus of this article is on

solving Cor the ,no eni; o? ro.'ce-anol, of oscillation function

relationship (,1=f(j)) From this, it is possible to obtain the

,naxinin, ani niniunum (algebraic values) overall moment of force M...

and M, , a3 well as Lts3 oaent of force-angl.e of oscillation function

relationship. Besides this, it is also possible, through the designation

of different wave forins (normal sine waves, sawtooth waves, and square

waves) to obtain the o lriJC oa nth: c,-'nctionml relationship M=I() .AS

- far as the elaborate separating out of elastic moments of force,

iasy:aetric-l onents of force, and moments of friction, and so on, is

;r'., i this artrcle makes no additional discussion.

-kfter on. solves for the instantaneous center of oscillation, the

cjor contradiction in a solution for tr instantaneous ,oent of force

becoaei the probleQ3 of the point of action and the direction of a systern

of forces in a specified space. We chose to make use of the two methods

of Euler transforations and CoIr di-aensional numerical transformas, and

t ihe re1.alpide difference in values of force arms which we obtain in the

solutions is not greater than 0.8%. Even so, we only introduce one

(1) k, 't.)r Jsed to ontrol the Direction and Amount of

Thrust

From Fig. 1 one can see that the actuator tube noveaent points are

-. 2' ' -ely G, and G, ,the points of action for motive forces F,

- q .1 F , . 4oreover, the points G, ni C, -e cnv-..;. to

the rigidity provided by the rod. Therefore, t'i ybl-i . , )1

solving for the spat.al coordinates of points G, an G,,

(I '"ele'ction oF a dynamic coordinate systema

1 i )rdLnate .system:
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GX'Y'Z' --- the coordinate axis which corresponds to the fixed

coordinate system QXYZis always maintained parallel. The origin point G

i3 the base on the rod center line for point G, (or G, ).

..

Y y

X

Fig. 9 The Transforiaation of a Dynamic Coordinate Systein ProQd GX'Y'Z'-GXY"Zr

(b) 'Rotary Coordinate System:

GX'Y'Z" the angles of rotation corresponding to the

:)too.rnIite sste' GX'Y'Z' are ;, , I, and their rotational order is as

presented below: (See Fig. 9)
First, we rotate through angle v around axis GX' , obtaining

coordinate systie GXY, Z,

We also rotate through angle 6 around axis G',

)b!,;-, ,bgr the coordinate system GX,Y,Z 2

':1tt, ' ot-te tic orIgh angle around axis GZ,

obtaining coordinate system GX'IYZ" . The angles 9,64 are

called Eulr angles.

(2) Euler i.ngles and Their Transformation

(a) Solving for Euler kngles

In the --J .r:3 P P-t r t O)ne , Le -l r t j .)bt t, rvd the result

h-t the a.ngles of rotation around the various axes of the fixed

oD rJ~n'Vte :y3 t :, OXYZ bj the - tC*- li.ne o f the jet tube are

*..r :,re ,list 3oli¢ for the El-ler aagles ,h!-h cor'respond -o each instant.

ioi " [. 9 it i3 po)--ble to obtain the transform angular velocity

projection 'elationship f'or the GX'Y'Z' coordinate system.
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Table 1

GX' 1 o sin6

GY' 0 cos, -cosa.sinv

GZ' 0 ui. CosW.os.

Iro; T-ible 1 #e get the following series of relating equations:

dc, d + sin 6.d
' 0 'dt dt dt

da d6 do
7Tit- dtCJ" dY = si op " - -+CS6 Mn 7 d-

WT d t

d6 =dq; + sin a • d

da=c sq' • d6-cos6 • sing) • d "  (56)
dO - sin q) • d6 + cos 6 cos 9 dob

CoorlinIte traqformations are only related to the results of

ro-ttonal fioverents and do not consider the process of their rotational

raetS. If one desired to solve for the corresponding angles in a

certain situation, it is possible to recognize that one always begins the

rotational :ovenrient from zero degrees aad siilta,,o.j . i3 : ? tU.

method of Preezing the coefficients, recognizing the use of approxiaat'e!

uniform rotational speed. In this way, equation (56) can be seen as

beconing a set of differential eqimiations witii corn3tan t coefficients and a

zero integration constant, for purposes of integration. Because of this,

one has:

fl,= + sn , €, 5'7)

0,=sinqa,6,+cos63, • cosq, O,

In order to facilitte the carrying out of iterative substitutior,

calculations, we change these to the form shown below:
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O,=(O,Csq,-a, • si"90/ o i

6,=(a,+cos , - in ,. - ,)/cos ,(

The initial value for iterative substitution can be taken to be:
P ?inally, we solve for the Euler angles: O,.,4,

(b) Euler Transformation
The purpose of the transformation is to carry out a solution for

:ore-its in a Ciced coordinate systemi. On the basis oC the trasrifornatiori
order which is given in Fig. 9, we obtain the results shown below:

Transforivition of GX'Y'Z'-,GX.Y.Z.

cS0. -sinp, 0

0 0 1

Transformation of GX,Y,Z,-.GXY,Z,

com6 0 sin ,
A,=( o 1 0

-sin6 0 cms6

T7 r f r r1 " 'o r 1i -o'l O^. GX,Y.Z,-GX'Y'Z'

1 0 0
A,-- 0 co q -sin J o

Lo sin q) Cosq9

-v7r'ltJ'I o tir q-tt r i K ~r oi CXOYO'Z' o (,X Y, Z'
be A,. Then, we have
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cosicw~6  -sin bC00851
A,=, i 03li009d +oso~l sifl, sifl97, OOso, - o ;- sin osin5jsinq~j,

t73
sin 6,

-cos , si qp,

The transformiation of point G,, in coordinate system GX'Y'Z'

IF , =,4,

The tranisforrn-ttiori oC' poinit G,, in coordiniate syst-iu GX'Y'Z'

1 A, FRc

7'Tj11.7 1 - r rvf~v q rodY points G, and G, I i f fi xed

coordin~tte system
As far as the tr -tnslatiori ooer4-iIons -)L -'[g> bii'-?, -.

, . i iqer'I ~ ' l ~~ of e -i h po L t rli V
) 3)~t' Vor- tie -irinont of displaceinent of h r 1:; C

ri r rio ~oo rd inat e s yst em:
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1

3 o Iut ioq of the S 'L ril ta--rj(e),I fjt It iorv,- (35) and (65) allows us to
obtal-q 2oo00dirv'-te-3 for theb point G

ZG(J%/z4U11fGI2U,

X~ = jzc+Qj

in the equations UK 2+;,2K(,x 1 +,P-.)z 6

'By pattng ellatioi 3) and equation (64) together respictiv(el
-3 1~ai~ ') 3 S L t) b ttii thi 'tr-3'o)r tti-)rl ) , O t

Xe, Xe,, +Xc, (67)

X 0,X.+ Xg;, (63)

Z 2 4 =ZI+Zc,

*.~~i th fo~esacting,- to control the amount and

~ ~pI ~it trie -xi3 line of the activator tube .

* *. -L< IL-f- the aynarnic fulcrura and the fi~el

I)- thieir directional cosine.

7-F ; (69)

F3, As. = 1 G2, ;Bg, = yc,_-Io ;G, zGj- Ho0,;

ZI
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Armn Ilength of activator tube:

Directional cosine or for'ces3 acting:

F1 j cosf,8, 1 ../ also F, .,1,
oov Ocy, , elsios CgilL.

(2) Projections of the Vorcei actirig on thre varous ,,oordLiate

axes:

F Y,=F 1 cosa1 , also F = F,1cxsfa,

'F,, 1 F ,,cosy11

(3) Matrix Calculations

(1 ) Solve for the mnatrix of the instanitanreous osc Lllationi 3-Iter ~

the geonetrica. clenter line of' the jet tiahe

(a) Radius vector of' the- instantaneous oscillation center of the

forces acting

fBCG( and r~ 7, o r

ri S, (XG. - XC V100 r,, = (yG2,-yC.,)/1000

rji ( G(- r)10 also 2 = y i- c 1oo

(b) Overall moment of force--Main mrnmenit triI i:. relative 1), i rc

~oC~o the nain irolnet on the various coordirnate- -txee3
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(75
1 ) "n (7 -n , we --an then -3,l- e f' t;- rvmo.- , it

M ., !I rij n -) :A,., 43 ) f

" .. : V ,9 p . ,f. [A ,, 9 t Qf f,)r--lM .,.4 , -cc ,I=,

'/V.

,* V. '"A ) )t -it rl

-I n ' tr whicrn w- 'iLre-idy solved
. 'iii A.;-.3C ,ti, p i ;sib L tO .301Ve

A., B C

I nrough the h)rizor -l pr,)j-.:t i')n d i r'tn

w ni :h ,ippear3 in tht- X-Y 4,.agr~m,
, ,' -' , ", . .nt " f o acf liat ion of the

1, in : t:3 projection equaition:

y-- K.,x+b, :

K ., ',IA),,b, - ,

• : 9 . , .. , .. O -z ?
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(3) Calculation of Eccentric Thrust

Jet tubes, due to the ef ects of additional designated oscillations

arnl .oatail od prs .sures, are capable of causing jet tube axis lines to

give rise to radial displacement, creating thrust eccentricity. This is

'-n inportant technical target of .leciibl e connector he;tds.

In initial configuration, the jet tube axis line eq'iatLon i3:

x-x* my-ye__z-z. (34)
- A. B. C.

T I -itVions:

X,,Y,9Z. --- are the coordinates of a certain point on the OZ

1. K I -3 .

A,.B.,C. --- is the d n-ctti,. r r ,of te OZ ts, which is

always, for X.=Y.'O,A.-B.O,Z. and C. equal to certain

-onstant3. I e let the thrust eccentricity be Di , and we solve

9jvitions (35) and (84), we then have:

X,,-X., Y 1-Y., Z,-Z.

A, Be Ce
I A, B, C, IY.,A-X.BI (35)D i m 1A , B . IB C .1 I IC eA . I  / B .+ A

A, B. + I l B +  .

- ,1,-t 'L .-[ " >iity of Jet Tube O Lsc l t [On

- .t 'i;e , iuvtion we already obtained for the angles of rotation

iro)al t'1 ,rarioas axes:

0,-f(K • AT),a,-/(K AT);O-f(K • AT) K=O, ...... n

AT --- equii! 3t Is i -iL ' 1. .nt -t' L .

W ., -(fl, -,-)/
CJ,, - (a,- a,-, AT (86)
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The overall angular velocity Co is:

" 1 -V 0 +cD~+w5 ~(87)

(5) Stroke of activator tubes

In the third sectIoq, we already solved for the instantaneous

lengt hs of activator tubee: L., and L,, with the zero position length

of thfe ,ctivrator tube a- -L. Froa this, the itroke of the activator
tubes is :

A~o, "L, - .( 88 )
ALy, L, - Lo

(5) Spatial displacements caused by the effects of axial

displacelaent co npensation and contained jet tube pressures

This compensation is aitoaticlly catied out qhen the comaand

signal is zero. After that, one carries out measuremnents and

calculations ol its spatial displacement. This is also another important

t-~lnTcal praaeter of flexible connector heads.

itI jet t;Ths i their initial configuration ( pressure zero,

command zero) the electrical zero value of the mechanical apparatus and

the senvsors 3h110 l _.,

X,:-X ,:.*o;Y,:-Y:.0; Z,:=o

Atur -- rryiqg oat compensation lor th , -f t. o, containedi

pressure, this should satisfy:

IX,;-X;1 0O.1,IY,'-Y,;<O.1 We then have:

Aoial displaceqent: AZ Z,-Z,
Rdial displacement: AXx,-X,)

r"f,;-,:
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NIo t r: T rfi ;s- in -dlI the 9autiori tq ; .,tl,, II.:-tt i ) - -t rl il i1 'I ~
TLength: The r ,L r,,,r,, 143+ rl-t.r' ,.s , ,ii. AL. ,+' 'lit

:slre Tfl(a.

Angles and angular velocities: thpse respe,tiv(!y 113 .? gr,- ; ;id

4 q:r -; 1'n -1.,3 iili t,3.

i), r jq i*,Lr cin a!3 tnit1.
'4on~rit- o) r)r,:,: ilgst.-neter.

Time: seconds.
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